エクサウィザーズ Engineer Blog

株式会社エクサウィザーズのエンジニアチームブログ

【連載】時系列データにおける異常検知(1)

はじめに

こんにちは。MLエンジニアの福成毅です。

私は、ある自社プロダクトの要素技術として時系列異常検知モデルの開発に携わってきました。(2019/10 〜 2020/03) 異常検知には今まで取り組んだことがなかったですが、時間をかけて様々なアプローチがあることを学びました。 異常検知は、機械の故障やシステム障害などにおいて発生する異常データを見つけ出すということですが、様々な産業での応用が期待されています。

一方で教師データ(特に異常データ)の不足や時系列特有の制約など、どうしても難易度が高くなりがちなタスクでもあります。

この連載では、業務を通して得た学びとして、自分なりの時系列異常検知の考え方について述べ、経験を基にいくつかの切り口で手法を紹介していきます。 また、上記モデル開発の初期PoCを通しての気づきや実際ハマったところについても共有していきます。

何回かに分けて投稿しますので、少し長くなりますが、おつきあい頂ければ幸いです。

基本的な考え方

ここでは異常検知の基本的な考え方について述べていきます。

教師なし学習

異常検知は教師あり学習・教師なし学習どちらでも解くことができますが、 どちらかというと教師なし学習の方がスタンダードなやり方になります。

イメージとしては、まず「正常モデル」のみを作り上げ、 この正常モデルでは「理解」できなかったデータは異常と考えるということです。

ちなみに正常と異常が選り分けられなくていなくとも、異常データが正常データに比べてごくわずかであれば、異常データがノイズとなるだけで正常モデルを作ることができます。(とはいえ正常データのみで正常モデルを作ることがベストではありますが・・・)

f:id:t-fukunari:20200424170800p:plain

教師あり学習の難しさ

なぜ教師なし学習が異常検知においてスタンダードなのか。 異常検知は教師あり学習・教師なし学習どちらでも解くことができます。 ただその中で「異常検知は教師なし学習で行うのがよい」ということを皆さんはよく耳にするかと思います。 もちろんラベルさえあれば教師あり学習でも行うことは可能ですが、いくつかハードルを乗り越える必要があると思います。

具体的には、以下のようなケースがあると考えられます。

異常データが少なすぎる

そもそも異常は滅多に起こらず(だからこそ「異常」なのですが)、 正常データは十分あるが異常データがほとんど得られないということが考えられます。 このような不均衡データでモデルを作るとどうしても予測が正常に偏りがちになります。

またモデルが作れたとしてもかなり不均衡なデータになり、教師あり学習その問題にも対処する必要が出てきます。

未知の異常に遭遇する可能性が高い

いままで運良く故障しなかった箇所の故障、新手の詐欺・ハッキングetc... 大方我々を待ち受けているのは未知の異常です。これまでの既知の異常でモデルを作ったとしても、未知の異常が得られるたびに、再学習や時には問題設定の変更を強いられることになります。

f:id:t-fukunari:20200424170852p:plain

そもそもラベルがない

よくある話です。まだ異常に遭遇していなかったり、異常のパターンが網羅できてなかったりすることが理由として考えられます。 また後に述べますが、正常の定義が変わっていくことでラベルをつけることができないケースも考えられます。

確率分布による正常モデル

ではその「正常モデル」をどうやって作っていくか。色々方法はあるかと思いますが、まず思いつくものとして確率分布を考えることかと思います。 ざっくりとですが、正常データでヒストグラムを作り、それを滑らかにするイメージです。 ここでの正常データは、異常が含まれていないか、含まれていたとしてもごくわずかであることを前提とします。 ごくわずかであれば含まれていてもよいというのは、わずかであればモデル化の際に無視されるためです。

f:id:t-fukunari:20200508134927p:plain

そして異常かどうか調べたいデータが上記の分布において確率が低いところで観測された場合、 正常とされる中でめったに起こらないことが起こった = 別の分布から発生したのではないか?と疑うことができます。つまり正常ではないということです。どれぐらいの低確率だったら異常とするか = 閾値をどれくらいにするかは調整次第ですが、様々な手法は概ねこの考え方に帰着しそうです。

また、分布そのものを考えなくとも、統計量で考えることも可能です。例えば、正常データの平均値からの距離が標準偏差×定数倍を超えたら異常とする、といったものです。データが少なすぎてどうしても分布を推定できそうにない時に役立ちそうです。 (他にも距離で考えるアプローチなど色々ありますが、後ほど追って紹介していきます。)

時系列データにおける考え方

以降では、時系列データにおける異常検知の考え方について述べていきます。

時系列データにおける異常検知は、同じ時系列に正常だといえる期間と比べて異常かどうかを吟味することになります。

まず、時系列データの中で二つの区間を決めます。 正常と定義したベースラインの区間をここでは「参照区間」とします。 対して、その参照区間と比べて異常かどうか調べたい区間を「評価区間」とします。

そして参照区間でモデルを作り、評価区間でのデータをそのモデルで「理解できない」とした時に 「参照区間に対して評価区間が異常である」と言えます。

f:id:t-fukunari:20200508171848p:plain

大抵のタスクでは、直近の時系列に対して異常かどうかを判定したい場合が多いので、 参照区間と評価区間を隣り合わせにすることがポイントです。 そして下図のようにスライドさせることで、すべての区間で異常かどうかを調べていく、という流れになります。

f:id:t-fukunari:20200908154317p:plain

また私自身で経験はしていませんが、もし正常な区間が明確にわかっているようなタスクの場合は、参照区間を正常な区間に固定し、 評価区間のみをスライドさせることも考えられます。(機械の故障検知などでみられるのでしょうか?)

f:id:t-fukunari:20200508171711p:plain

時系列異常検知のタスク

時系列における異常検知のタスクとして みなさんがよく耳にするのは「外れ値検知」「変化点検知」この2つかと思います。 なんとなく違いをイメージできるかと思いますが、 ここでは、先ほど紹介した参照区間と評価区間の枠組みで改めて振り返ってみたいと思います。

評価区間を1点にする → 外れ値検知

評価区間を1点とることで、「1点」が異常かどうかを調べることになります。 これが「外れ値検知」とよばれるタスクになってきます。

f:id:t-fukunari:20200908172912p:plain

そしてざっくりとですが、外れ値検知はさらに2種類に分けられます。

1つが時間依存しない外れ値です。 つまり時系列をシャッフルさせても外れ値としてわかるものです。 値そのものがイレギュラーな値になるので、先ほどの確率分布による正常モデルで考えることができます。 また、閾値を持たせることでルールベースでも解けそうだというのがわかります。

f:id:t-fukunari:20200508175311p:plain

もう1つが時間依存する外れ値です。 値そのものとしてはおかしな値でもないのですが、文脈的にみるとおかしく見えるものです。 このような外れ値の場合はChangeFinderのような時系列予測系のモデルを用いた方がうまく解けそうです。

f:id:t-fukunari:20200508175354p:plain

評価区間を2点以上とる → 変化点検知

逆に評価区間をある程度の長さをとることで、「変化点検知」とよばれるようになります。

参照区間を正常と仮定することで、評価区間では「カタマリ」として異常が出てくることになります。

参照区間と評価区間を隣り合わせにしていることが前提ですが、 上記が起こった場合、参照区間と評価区間で何かしらの「変化」が生じたということが言え、 区間の境目が「変化点」ということになります。

f:id:t-fukunari:20200908172947p:plain

これに対するアプローチも様々かと思いますが、 代表的なものとしては、下図のように部分時系列ベクトルにデータを変換してから外れ値検知的なアプローチに持ち込む、というのがシンプルな方法かと思います。

f:id:t-fukunari:20200508182730p:plain

また、これまでは正常区間のみでモデルを作ることをお話ししてきましたが、 評価区間にも十分データが揃うので、評価区間でもモデルを作ることが可能になってきます。 分布のイメージだと、参照区間と評価区間でそれぞれ分布ができるようなものです。 あとは分布そのものを比較したり、また後述する分布の比を求める方法で異常かどうか調べていくことができます。

f:id:t-fukunari:20200508162434p:plain

今回はここまでです。次回以降は、様々なアプローチの紹介や、PoCを行なって行く上でのハマりどころ などについて述べていく予定です。

参考文献

おわりに

エクサウィザーズは優秀なエンジニア、社会課題を一緒に解決してくれる魔法使い”ウィザーズ”を募集していますので、ご興味を持たれた方はぜひご応募ください。
採用情報|株式会社エクサウィザーズ

ExaWizards Engineer Blogでは、AIなどの技術情報を発信していきます。ぜひフォローをよろしくお願いします!
Linkedinもどしどしフォローお待ちしています!

ロボット制御における特異点

エクサウィザーズMLエンジニアの柳元です。 あけましておめでとうございます(遅い)。
エクサウィザーズのRobotTechチームはこれまでにマニピュレータロボットを使って 粉体秤量 、液体秤量、 パレタイジング 、ピッキング、コンプライアンス制御などの動作を機械学習させることに成功してきました。 そして、これらの学習済みモデルを COREVERY によってデリバーしています。
学習と制御のフローを考えたりデバッグをする上で、念頭に置かなければならないことの1つとして、特異点の問題があります。今回はロボット制御におけるこの「特異点問題」についてお話しします。

ロボットの特異点(Singularity)とは?

特異点と聞いて何を想像するでしょうか?多くの人が 技術的特異点 を想像するかもしれませんが、数学・物理学・制御学においては
特異点(とくいてん、英: singular point、シンギュラー・ポイント)は、一般解の点ではなく特異解の点こと。ある基準 (regulation)を適用できない、あるいは一般的な手順では求まらない(singular) 点である。特異点は、基準・手順に対して「—に於ける特異点」「—に関する特異点」という呼び方をする。
とあります(Wikipediaより)。
ロボット制御における特異点は、構造的に制御できない姿勢を指します。軌道に特異点が含まれている場合、ロボットは特異点付近において高速に移動(暴走)し、そして特異点で停止してしまいます。 なので、制御する際にはこれを避ける必要があります。

ロボットの姿勢の表現

ロボットがどんな体勢になっているかの表現は、ふつう以下のいずれかを使用します。
  1. 関節変位 (Joint space) $q$: 関節の角度の値
  2. 姿勢 (Pose, Task space) $r$: TCP(Tool Center Point, ロボットの手先の位置)を表す3次元空間の値
例えば、URのような6DoFのマニピュレータは、6個の関節(joint)を回転させて姿勢(pose)を変化させることができます。
画像は公式サイトを元に弊社で注釈をつけたものです

この場合は関節変位$q$と姿勢$r$はそれぞれ \begin{equation} q = [\theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6] \\ r = [x, y, z, r_x, r_y, r_z] \end{equation} というベクトルで表現できます。
例えばこのロボットのエンドエフェクターにグリッパーを取り付けて、物体のピッキングをさせる場合について考えます。 物体は深度カメラで撮影されていて、その位置$P=[x_P, y_P, z_P]$は既に計算されています。 あとはロボットのTCPを位置$P$付近にくるように姿勢を制御してグリッパーを閉じれば、物体を掴むことができます。
ただ、ロボットそのものにできることは基本的には関節を動かすことだけです。 目的地点の位置や姿勢を指示されても、関節をどう動かせば目的の姿勢になるのかがわかりません。 そこで運動学を考える必要が出てきます。

運動学

運動学(kinematics)とは関節変位$q$と姿勢$r$の関係を表す数式であり、
  1. 順運動学(forward kinematics): 関節変位$q$から姿勢$r$を求める, $r = f(q)$
  2. 逆運動学(inverse kinematics): 姿勢$r$から関節変位$q$を求める, $q = f^{-1}(r)$
の2種類があります。 上述のピッキングの例だと、逆運動学を使って$r$を$q$に変換する必要があります。

同次変換行列

順運動学$f$について知るために、まず同次変換行列(Homogeneous transformation matrix)について説明します。
3次元空間に原点座標系$O$と座標系$A$があり、点$Q$が座標系$A$上の $r_{Q}=[x_{Q}, y_{Q}, z_{Q}]$に存在していたとします。 ここで、座標系$A$を原点座標系$O$に対して$p=[x_p, y_p, z_p]$移動させ、さらに$R_{OA}$回転させます2。 移動と回転後の点$Q'$の位置$r_Q'=[x_Q', y_Q', z_Q']$は \begin{equation} r_Q' = p + R_{OA}r_{Q} \end{equation} となり、これは下のように書けます: \begin{equation} \begin{bmatrix} r_Q' \\ 1 \\ \end{bmatrix}=\begin{bmatrix} & & & \\ &R_{OA}& &p \\ & & & \\ 0&0 &0&1 \end{bmatrix} \begin{bmatrix} r_{Q} \\ 1 \\ \end{bmatrix} = H_{OA} \begin{bmatrix} r_{Q} \\ 1 \end{bmatrix} \end{equation} この$H_{OA}$を同次変換行列といいます。

リンクとジョイント

ロボットはリンクジョイント(関節)で構成されています。 人間の腕で考えると、脇や肘、手首が回転の中心があるジョイントで、ジョイント同士の間にある上腕や前腕がリンクです。
再びURについて考えると、リンクとジョイントは下の図のようになっています。 「ジョイントn」の関節角度は$\theta_n$で、TCPはリンク6の上にある点です。
画像は公式サイトを元に弊社で注釈をつけたものです

このように、ロボットは複数の座標系が連なりあって構成されていて、各ジョイントの関節変位と姿勢によってTCPの姿勢、つまり順運動学が計算できると予想できます。

Denavit–Hartenberg parameters

Denavit–Hartenberg parameters(DHパラメータ)は、上のような同次変換によってロボットの順運動学を計算する際に必要な4つのパラメータ$\alpha, a, d, \theta$を指します。
Wikipediaより引用

上の図のようにDHパラメータと座標系が決まっている時、座標系$n-1$から座標系$n$への同次変換は次のようになります: \begin{equation} T_{n}^{n-1}={\rm Trans}_{z_{n-1}}(d_n) \cdot {\rm Rot}_{z_{n-1}}(\theta_n) \cdot {\rm Trans}_{x_{n}}(a_{n}) \cdot {\rm Rot}_{x_n}(\alpha_n) \end{equation} ただし、 \begin{equation} {\rm Trans}_{z_{n-1}}(d_n)= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_n \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} \hspace{30pt} {\rm Trans}_{x_n}(a_n)= \begin{bmatrix} 1 & 0 & 0 & a_n \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} \\ {\rm Rot}_{z_{n-1}}(\theta_n)= \begin{bmatrix} \cos\theta_n & -\sin\theta_n & 0 & 0 \\ \sin\theta_n & \cos\theta_n & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} \hspace{15pt} {\rm Rot}_{x_n}(\alpha_n)= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\alpha_n & -\sin\alpha_n & 0 \\ 0 & \sin\alpha_n & \cos\alpha_n & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} \end{equation} であり、それぞれが各パラメータによる並進または回転の同次変換となっていることがわかります。 また、Modified Denavit–Hartenberg parametersというものもあり、上記の古典的なDHパラメータと比較して各座標系の原点と変換の順序が異なっています。 詳しくは Wikipediaの記事 などを参照してください。

順運動学

URのようなマニピュレータの順運動学を導出する場合、リンク0とジョイント0が乗っている座標系0からリンク6とジョイント6が乗っている座標系6への同次変換$T_6^0$を導出する必要があり、 $$T_6^0=T_1^0\cdot T_2^1\cdot T_3^2\cdot T_4^3\cdot T_5^4\cdot T_6^5$$ によって求められます。 $T_n^{n-1}$は$\alpha_{n-1}, a_{n-1}, \theta_n, d_n$を変数とする関数とみなせます。 そしてURの場合、$\theta_n$が独立の変数なので、実質的には$T_6^0$は$q=[ \theta_1, \cdots, \theta_6]$を変数とする関数となります。 $T_6^0=T(q)$とすると、順運動学は \begin{equation} \begin{bmatrix} r \\ 1 \end{bmatrix}=T(q)\begin{bmatrix} r_0 \\ 1 \end{bmatrix} \end{equation} から、最初に書いた$r=f(q)$を導けます。

逆運動学

順運動学から逆運動学$f^{-1}$を求めるためには、上の式から逆算で求めれば良さそうですが、$T_N^0$の$N$が大きくなるほど逆算は困難になります。 $N=6$にもなると、ほとんど無理です。 そのため、順運動学から数値解析的に求めるのがふつうです。 以下は姿勢$r_{tgt}$の時の関節変位$q_{tgt}$を求める手順です。
  1. $q=q_0$(初期値の設定)
  2. $r=f(q)$(順運動学で$r$を求める)
  3. $| r_{tgt} - r |$の大きさを調べる
    1. $| r_{tgt} - r |$が十分小さければ、$q_{tgt}=q$として終了する
    2. そうでなければ、順運動学のヤコビ行列の逆行列によって$q$を修正する。手順2に戻る。
ヤコビ行列とは、
一変数スカラー値関数における接線の傾きおよび一変数ベクトル値函数の勾配の、多変数ベクトル値関数に対する拡張、高次元化
です(Wikipediaより)。 つまり、勾配法の要領でヤコビ行列から$q$の修正すべき向きと量が決まって、$q_{tgt}$に近づけていけます。
$r=[r_1, \cdots, r_M], q=[q_1, \cdots, q_N]$の場合、順運動学は \begin{equation} x_i=f_i(q_1, \cdots, q_N) \end{equation} であり、ヤコビ行列の要素は \begin{equation} J_i(q_j)=\frac{\partial f_i(q_1, \cdots q_N)}{\partial q_j} \end{equation} と表せます。
姿勢の空間は$r=[x, y, z, r_x, r_y, r_z]$のため$M=6$となります。 また、URのような6DoFマニピュレータの場合だと$q=[\theta_1, ..., \theta_6]$のため$N=6$となります。 よってヤコビ行列は$6\times 6$の正方行列となります。

特異点

問題は、順運動学のヤコビ行列の逆行列が存在していない場合です。 逆行列を持たない正方行列の特徴として行列式が0(${\rm det} J=0$)となることが挙げられます。 ヤコビ行列の逆行列は \begin{equation} J^{-1}=\frac{\Delta_{ij}}{{\rm det} J} \end{equation} となるので、${\rm det} J$が0に近づくほど$J^{-1}$の要素の絶対値は大きくなります。 姿勢$r$と$J^{-1}$から関節変位$q$を求めるので、このときの関節変位の速度も急上昇し、結果的にロボットが暴走しているように見えます。 そして、${\rm det} J$が0となると、逆行列を算出できなくなり停止してしまいます。 これがロボット制御における特異点の問題です。

擬似逆行列

今日、様々な解決策が提案されています。 もっともよく知られているのは、逆行列の代わりに擬似逆行列を使う方法です。 擬似逆行列の利点は、上のような例における特異点を避けること、そして7DoFのような冗長ロボットのように$N\neq6$でないためにヤコビ行列が正方でない場合についても求められることです。 欠点は計算量が多いことで、スピードを重視して転置行列で近似してしまう方法もあります。

おわりに

エクサウィザーズは優秀なエンジニア、社会課題を一緒に解決してくれる魔法使い”ウィザーズ”を募集していますので、ご興味を持たれた方はぜひご応募ください。
採用情報|株式会社エクサウィザーズ

注釈

1: ロボット(マニピュレータ)には直列タイプと並列タイプがあり、ここでは直列タイプについて扱う。直列タイプに含まれるのは、例えば UR, Panda, LBR iiwaなど、関節が直列な構造を持つものである。

2: $R_{OA}$は$3\times 3$の回転行列である。

エクサウィザーズ の技術力向上の取り組み

この記事について

皆さんご承知の通り、機械学習界隈は進化が早いです。一説によれば、機械学習に関する論文が1日100本以上出ているとも言われています。 そんな超速進化をしている機械学習ですが、それを扱うエクサウィザーズでは常に最新技術に追いつき、技術力を高めていく取り組みがあります。 この記事では、その取り組みの一部を紹介します。

社内における取り組み

社内では、主に2つの勉強会をしています。 案件共有会と論文読み会です

案件共有会

毎週1回1時間実施しており、主なトピックは取り組んだ案件の技術的/ビジネス的な取り組み内容の共有です。 この勉強会を通すことで、異分野との交流や知見の取り入れを諮り、相互作用による技術革新を狙っています。

この写真は最近行なった、ある自動車メーカーの異常検知タスク案件の取り組み共有の様子です。質疑応答も活発に行われました。 f:id:akira0926yosouguy:20191120151232p:plain

「ある分野では当たり前のアプローチが他の分野だとやられていない」というようなことが多々あります。特に弊社のようにケア事業、ロボット事業など取り組んでいる分野が多岐にわたる企業では、個々に取り組んでいると視野が狭くなったり、力が分散してしまいがちです。 このような知見の共有会を開くことで、各分野の技術交流を諮り、技術の転移・知見の共有で個々の技術を伸ばしていこうと考えています。

論文読み会

こちらも毎週1回1時間実施しており、論文1本当たり30分x2本という内容です。 毎週2人の担当者が質疑応答含め30分で、論文の内容をまとめて発表します。

1年間は約52週なので、この勉強会だけでも年間約100本分の論文の知見を取り入れることができます。 弊社では色々な分野の専門家がいるため、それぞれ異なったことに興味を持ち、選ぶ論文の研究分野もひとそれぞれです。普段自分が読まない分野の論文に触れることにより、技術の幅を広げることができます。

この資料は実際に発表で使われた資料です。弊社は海外籍の方も多いので、前半はこのように英語による発表をしています。

www.slideshare.net

そして、下記表は直近の発表内容ですが、ある分野に偏らずに色々なものが存在しているのがわかると思います。

論文のタイトル等 大まかな内容
RNNs Evolving on an Equilibrium Manifold:A Panacea for Vanishing and Exploding Gradients? RNNの改良
Neural Processes Gaussian Processのニューラルネットへの拡張
Gate Decorator: Global Filter Pruning Method for Accelerating Deep Convolutional Neural Networks ニューラルネットの枝刈り(圧縮)
Polygon RNN, Polygon RNN++ アノテーションを半自動化
Data Cleansing for Models Trained with SGD データクレンジングをNNを介して行う研究
Hamiltonian Graph Networks with ODE Integrator 物理シミュレーションへのDNN適用

社外を含めた取り組み

エクサウィザーズ では社内で閉じた取り組みだけでなく、社内の枠組みを超えた一般公開の勉強会も行なっています。 大きく分けると、研究者やエンジニア向けの国際会議や研究分野に絞った勉強会、キャリアやビジネス側の人も対象者含めた技術系以外の勉強会、の2つです。

近畿圏で多くの勉強会を行なっていることがエクサウィザーズ の特色です。 このような勉強会は首都圏では珍しくないのですが、近畿圏ではそこまで数は多くありません。 弊社は京都に拠点を持っているため、近畿圏で勉強会を開催することにより、近畿圏の機械学習コミュニティの醸成にも微力ながら貢献していきたいと考えています。

以前開催したCVPR2019読み会では、京都大学の鹿島先生もお招きして平日の19:30~21:00に3人の発表者x2日程で行いました。この資料は鹿島先生に登壇いただいた資料です。

www.slideshare.net

開催イベントはconnpassのExaWizardsグループのページから確認できますので、ご興味ある方は是非ご参加ください。 exawizards.connpass.com

国際会議や研究分野を絞った勉強会(研究者、エンジニア向け)

KDD, CVPR, AAAIのように注目度の高い国際会議の勉強会を開催しています。 たとえば去年行なったKDD 2018(データマイニング領域のトップカンファレンス)の論文読み会では、理化学研究所・京都大学と共同で行い、実際に参加された方を招待講演としてお呼びして開催しました。詳細や登壇資料は下記ブログをご覧ください。

techblog.exawizards.com

2019年の実績としては、CVPRの読み会, AAAIの読み会を実施しており、ICCVの読み会も実施予定ですのでご興味ある方は是非ご一緒に勉強しましょう!

exawizards.connpass.com

exawizards.connpass.com

また、GANやVAEなどの生成モデルにテーマを絞った勉強会も実施しています。

exawizards.connpass.com

ビジネス側の人も含めた勉強会やキャリアに関する勉強会など(技術系以外の勉強会)

世の中の課題を機械学習で解決することは、機械学習エンジニアが優れたモデルを作るだけでは達成できません。 その課題を機械学習の問題まで落とし込める「問題設定を考えるビジネス側の人」も巻き込む必要があります。 https://techblog.exawizards.com/entry/2018/08/15/184404エクサウィザーズでは、ビジネス側の方々も対象にした勉強会を実施しています。

exawizards.connpass.com

また、12月初旬にはマスクドアナライズさんを招いて、「これからの機械学習エンジニアに求められるスキル」をテーマに勉強会を行います。

exawizards.connpass.com

最後に

エクサウィザーズは機械学習の超速発展に対応するために様々な勉強会を開いて技術向上に取り組んでいます。 機会がありましたら、是非みなさんも参加してみてください

研究と両立しながら挑んだ3ヶ月間

1,はじめに

初めまして,3ヶ月間エクサウィザーズでお世話になりましたインターン生の井上です. 今回は研究と並行しながら臨んだインターンシップについて振り返り,エクサに興味を持っている方に取り組んだことや雰囲気を伝えることができれば幸いです.

自己紹介

早稲田大学の修士2年で機械学習に関するアルゴリズムや分析を行う研究室に所属し,現在は統計的因果推論の研究に携わっています. 学部では文系学部で統計学を学び,趣味の競馬に活用するためのAIの開発やデータ解析のコンペに参加していました. 現在は,機械学習のパッケージの使用経験や分析経験はあるものの,諸々の機械学習アルゴリズムについての知識は完全にわかっているというわけではない状態で不安と楽しみな感情を抱えつつインターンに臨みました.

インターンシップに参加するにあたって設定した課題

・インターンシップを通じて,どんなことに取り組みそこからどんな学びを得るのかというのを明確にするためにあらかじめ最終的な目標を設定しました. また,そこに到るために具体的にどのような進み方をするのかを検討しました.

【実際に設定した課題の例】

・機械学習に関する知識を広く身につける.そのために参考図書を読破する

・施策の立案に役に立つ手法の実装を行う

・実装した手法を用いて分析を行い,納得感の得られる施策を考える

などこのインターンシップ全体の大目標と共に短期的な中目標も設定した上で課題に取り組んでいきました.

インターンシップの初日に面接でお世話になった遠藤さんにお時間をいただき,ディスカッションを行いながら具体的な目標設定を行いました. 遠藤さんは私がインターンシップを通じた成果を感じられるよう,精力的にアドバイスやご指摘をしてくださり,目標設定にも非常に熱が入りました.

また,その後も目標がどの程度達成することができているのかを確認するために1 on 1で面談する機会を設けてくださり,お仕事がお忙しいにも関わらずよく目をかけてもらい,非常に感謝しています.本当にありがとうございました.

2,取り組んだこと

(1)機械学習周辺に関する勉強

機械学習周辺の知識を身につけるために課題の本を設定してもらい,約1ヶ月半で読破することを目標に取り組みました.

「[第2版]Python 機械学習プログラミング 達人データサイエンティストによる理論と実践」(表紙が緑の分厚い本に取り組みました)

最初から少しずつ読み進めていきましたが,読んではコードを写して実行しまたそれを繰り返す,という単純な作業を繰り返すことに飽きてしまったため,私はuci machine learning repositoryでサンプルデータを拾ってきて実際にデータを分析しながら,わからないところは本を参照しながら学ぶという形を取り勉強しました.また,理解したアルゴリズムはアウトプットして更に理解したいと思い,図を用いて端的にまとめるといった工夫をしながら進めることで楽しく勉強を進めることができました.

おかげで自分がこれまであまり触れたことの内容な手法の理解だけでなく,これまであやふやだった手法についても理解を促進することができたと感じました.

この期間は本の勉強に充てるだけではなく,実際に分析する際の手法の検討(主に論文の探索)も行い,見つけた手法が実際に適用することが可能かどうかを考える時間も設けていました.

(2)社内データを用いての機械学習モデルの構築

私は現在,統計的因果推論の研究をしているため可能であれば研究領域に近いことができると嬉しいなと思いながら機械学習手法の検討をしていました.

結果的に私はCare techのデータに対して因果探索手法を用いることができました.今後インターンシップを考えている学生の方へ”特に”伝えたいことは,

エクサウィザーズでは「対象とする手法が扱うデータに適合し,分析結果を通じて会社に利益をもたらすことが可能な機械学習モデルである」ということが伝えることができれば,インターンシップの立場であってもプロジェクトをデザインも主導することができるということです.

私自身は,自分がやりたいことをさせてくれた環境があるというのは非常に嬉しく感じました.

実際に取り組んだ手法は,

「Multiple-cause discovery combined with structure learning for high-dimensional discrete data and application to stock prediction」

https://link.springer.com/content/pdf/10.1007%2Fs00500-015-1764-8.pdf

という因果探索手法に着目しました.

f:id:K_Inoue_1030:20191024172829p:plain
論文中にある変数間の関係を模した図

この手法を用いることによって図のような因果関係を元にした変数間の関係を理解し,考察することを通じて納得間のある施策の立案につなげることができないかと考えこの手法に取り組みました.

【簡単なアルゴリズムの紹介】

Multiple-cause Discovery combined with Structure Learning(以下McDSL)では,大きく3つのステップに分かれたアルゴリズムになっています.


Step1: 変数間に何らかの因果関係があるかどうか探索する

Step2:不要な変数間の関係性を除去する

Step3:変数間の因果の向きを設定する


以上のような流れで変数間の因果関係を探索していきます.

Step1・2では条件付き独立性の検定を行い,変数間の関係性があるかどうかを確かめていきました.また,Step3では,統計的因果探索で用いられる回帰分析と独立性を考慮した方法によって因果の向きを定めていきました.(参照:清水昌平. 統計的因果探索. 講談社)

特に苦労したのは,条件付き独立性の検定を高次元データに対して適用する点でした.条件部に当たる変数が増大すると,非常に計算コストが増大してしまうため通常のカイ2乗検定による検定ではなく,以下の論文中にあるFCITという手法を採用しました.(https://arxiv.org/pdf/1804.02747)

実装を行った感想

実装自体に取り組み始めたのは8月の半ばからでしたが研究室の合宿や予稿の執筆もあり,かなりきつい時間でしたが濃密な時間だったように感じます.特に,うまく結果が出力されるまでに繰り返しアルゴリズムの理解を要し,それをプログラムとして具現化することや正しく結果を出せているかを確かめるためにシミュレーションを行うなどやることが多かったので日々必死に取り組みました.そのおかげで,何とか私がこれまでやってきたことを社内勉強会で共有し,インターンシップの最後を飾ることができたと思います.

実装自体は始めてみると楽しく,図が出力されうまく変数間の関係を表現した図が出力できたときには大きな達成感を感じることができ,良い経験になりました.また,社内の方々と図を元に結果の考察をした際に,図自体に興味を持っていただくことができたのでこうした点でも取り組んだ手法に意味があったのかなと感じています.

参考文献

・Chen, Weiqi, et al. "Multiple-cause discovery combined with structure learning for high-dimensional discrete data and application to stock prediction." Soft Computing 20.11 (2016): 4575-4588.

・Chalupka, Krzysztof, Pietro Perona, and Frederick Eberhardt. "Fast conditional independence test for vector variables with large sample sizes." arXiv preprint arXiv:1804.02747 (2018).

・清水昌平. 統計的因果探索. 講談社, 2017.

インターンシップの参考になれば・・・

・どのくらいの頻度で出社していたか?

→週2〜3日出社し,出社した際には10:00~19:00までフルタイムで勤務することが多かったのですが,都合に応じて自由にシフトを組むことができたので研究との両立をしながらインターンに参加し続けることができました.

・どんな人とお仕事をしたのか?

→私は,最終的にはCare techに関わるデータの分析を行うことになったのでCare techに関わってきたエンジニアの方と具体的な手法についてのディスカッションや実データに存在する変数に関しての議論を交わすことがありました.また,ビジネスサイドの方々とも関わることがあり,分析結果の考察や実際に結果を見せるにはどのようなデータを使うべきかといったことを熱心に話し合うことができました.協力してくださった皆さんのドメイン知識やこれまでの経験を通じたお話をしてくださったので勉強になることが非常に多かったです.私もなるべく自分の考えや分析結果を通じて思ったことを話したことに対して全力で向き合ってくれました.

・勉強会の内容や雰囲気は?

→勉強会ではこれまで取り扱った案件や参加した学会の雰囲気・学びが共有されることが多かったです.私はこの勉強会を通じてエクサの関わっているお仕事について多く知ることができたと思います.個々の勉強会の内容も非常に興味深いものが多く,聞いたことのある手法が実際に現場ではどのように使われるのかといったことを知ることができると思います.もし,エンジニアインターンを希望する学生の皆さんは積極的に参加することをお勧めします!!

3,最後に

3ヶ月間(特に最後の1ヶ月)はアルゴリズムの実装と予稿の執筆に追われ,アイデアが思いついた拍子に夜中に起きる日が続くなど大変なこともありました.しかし,機械学習の基礎の勉強から実装さらには実データの分析を行うことを通じて大幅に短期間でレベルアップができました.自分で取り組む課題を決めて,周囲の人を巻き込みながら仕事を進めていくというフローを実際に体験できたことは今後の大きな糧になると感じています.このような場を用意してくださったエクサウィザーズの皆様には本当に感謝しています.

3ヶ月間本当にありがとうございました.

尚、エクサウィザーズは優秀なエンジニア、社会課題を一緒に解決してくれる魔法使い”ウィザーズ”を募集しています。ご興味を持たれた方はぜひご応募ください。 採用情報 - 株式会社エクサウィザーズ

ExaWizards Engineer Blogでは、定期的にAIなどの技術情報を発信していきます。Twitter (https://twitter.com/BlogExawizards) で更新情報を配信していきますので、ぜひフォローをよろしくお願いします!

論文がネイチャーの姉妹誌「Nature Protocols」に掲載されました

こんにちは、エクサウィザーズの遠藤太一郎です。

私が参加した研究プロジェクトの成果が英科学誌「Nature Protocols」に掲載されましたので、ご報告です。 細胞を画像解析し、自動で分類する仕組みの再現方法などを、詳細に記述しています。 前回のCell掲載に引き続き、画像解析の深層学習のところで貢献しました。

論文は以下のURLから確認可能です。

https://www.nature.com/articles/s41596-019-0183-1

f:id:taichiroendo:20190708162740p:plain 本論文より引用

エクサウィザーズでは各種大学や研究機関と、共同研究を始めとし様々な連携を行っています。技術顧問の先生方とのディスカッションを始め、京都大学・理研AIPとの機械学習勉強会など、共催のイベントなども積極的に開催しています。

優秀なエンジニア、社会課題を一緒に解決してくれる魔法使い”ウィザーズ”を募集していますので、ご興味を持たれた方はぜひご応募ください。 採用情報|株式会社エクサウィザーズ

ExaWizards Engineer Blogでは、定期的にAIなどの技術情報を発信していきます。Twitter (https://twitter.com/BlogExawizards) で更新情報を配信していきますので、ぜひフォローをよろしくお願いします!

ディープラーニング初心者の僕がエクサウィザーズで6週間インターンして圧倒的成長した話

はじめに

はじめまして。エクサウィザーズでインターン生としてお世話になりました中野と申します。
このブログを通して、エクサウィザーズでのインターンの雰囲気やどんなことが学べるのかが伝わればと思います。

自己紹介

京都大学の修士一年生で、機械の制御について研究しています。
フィリピン旅行で力こそ正義だと気づき、最近ボクシングをはじめました。
インターン開始時、ディープラーニングを除く機械学習の経験は多少あったものの、ディープラーニング実装の経験はほとんどありませんでした。

やったこと①

概要

この、DonkeyCarというメカメカしいラジコンの自動運転に挑戦しました。
香港から輸入することで購入できます。日本円にしてだいたい35000円だそうです。

f:id:sonias:20190205135137p:plain

余談ですが、ドンキーというと某ゴリラを想像したのですが、ロバという意味らしいです。

組み立て

f:id:sonias:20190205151021p:plain

f:id:sonias:20190205151019p:plain

プラモデルの組み立てのようで楽しかったです。
ハンダ付けなどは不要でした
配線の解説ページが見つからず苦労しましたが、脳死して総当たりすることで無事通電させることができました。 その他にも、公式サイトが不親切なためデフォルトでないログインパスワードがわからないなど、ハマることが多々ありましたが、メンターの小野さんに相談し、何度も助けていただきました。

学習

教師データとして、DonkeyCar視点の画像を入力とし、その時のスロットルとタイヤの角度を出力としたデータを用い、DonkeyCar視点の画像からスロットルとタイヤの角度を算出するモデルを作成しました。 ネットワークはNVIDIAのPilotNetを参考に作成しました。 DonkeyCarにはシミュレーションソフトが存在するため、シミュレーション上でのデータでモデルを作成し、その後現実のデータで転移学習し、実機で自動運転を行う、という方針で学習を進めました。 以下、今回使用したネットワーク図です。

f:id:sonias:20190205173600p:plain

シミュレーション

教師データ作成

シミュレーションでの教師データは、道路の中心線に追従するPID制御で取得します。 PID制御の神パラメータを探し当て、教師データを作成しました。

自動運転

シミュレーション上のランダムに生成されたデータのみで学習したモデルで走行している様子が以下になります。 カーブなどにも対応しているのが見て取れます。

f:id:sonias:20190206122819g:plain

実運転

教師データ作成

転移学習のための実機で教師データを取得しました。 データ取得の際の操作はPS4コントローラーで行いました。データに関しては先程と同様に、カメラが取得した画像とその時のスロットルとタイヤの角度が紐ついて保存されます。 余計なデータが入らぬよう頑張るうちに、操作が熟練しました。

f:id:sonias:20190226150024p:plain

1本線上を走行

追従していることが見て取れます!!

2本線の間を走行

先程より難しいのか、最後にコースアウトしていますが、追従している様子が見て取れます!

考察・展望

  • シミュレーションではタイヤの角度を急に変化できるが、実機だと連続的にしか変化できないなどといった、実機とシミュレーションの違いを転移学習でうまく調整できました。
  • 2本線の場合だとコースアウトしたときのデータセットが必要そう。(1本線だとコースアウトが存在しないため)
  • RasberryPiの計算能力上げて画像処理を挟んだり、処理を複雑化してみたいです。

大変だったこと

マニュアル通りの環境だとプログラムが動かず、環境構築が大変でした。
メンターの小野さんに相談しまくることでなんとか解決しました。

やったこと②

概要

Dueling DQNという深層強化学習を用いた自動運転をシミュレーション上で実装して、挙動を検証しました。

学習

学習風景です。 報酬を、道路の中心ラインに近いほど大きく設定し、入力をDonkeyCar視点の画像に対して、タイヤの角度を学習しました。

f:id:sonias:20190205154512g:plain

以下、ネットワーク図になります。 f:id:sonias:20190205180539p:plain

結果

スムーズではありませんが、コースを示すラインに反応し動いています。

f:id:sonias:20190205174411g:plain

考察・展望

  • 道路の中心方向にタイヤの角度を向けても、短期的に見れば中心方向から離れていくことが起きているので、それを考慮できるアルゴリズムを適応すればどうなるか検証してみたいです。

タイムスケジュール

参考にですが、どのようなタイムスケジュールでおこなったかを記しておきます。
ほとんど進捗の無い週がありますが、サボっていたわけではなく、それだけ自由にシフトを組ませていただいたということですので、あしからず。

1週目

  • ディープラーニングの学習
  • ディープラーニングのネットワークの論文読み
  • WideResNetやLTSMをPytorchで実装

2週目

  • DonkeyCar組み立て

3週目

  • 走行コース作成
  • 走行モデル学習
  • RaspberryPi環境構築

4週目

  • 強化学習の学習
  • RaspberryPi環境構築

5週目

  • 強化学習実装
  • 実機データ収集

6週目以降

  • 実機自動運転

環境

内装

きれいで過ごしやすかったです。
おやつ、バリスタ使い放題でだったため、たくさん利用させていただきました。
バリスタで作るコーヒー美味しかったです。 f:id:sonias:20190205134641p:plain

就活相談

リクルート出身の半田さんが就活相談に乗ってくださりました。
就活を深く考えず進めようとしていた僕でしたが、半田さんへの相談により、軸や着眼点が明確になり、時間が無い中で就活を効率的に進める方法を理解しました。
また、僕の要望に応じて、外資金融や最大手SIer出身の社員の方とのミーティングを設定していただき、その点においてもキャリアを考えることにおいて大変参考になりました。

プログラミング環境

  • MacBookProメモリ16GB付与+社内GPU使い放題でした。
  • 無限に書籍買ってもらえました。
  • インターン生のためsudo権限が無いことで環境設定で少し詰まりました。

通勤・待遇

京都大学から徒歩1分。
シフトが柔軟に組めて、インターンが研究会やテストの阻害になることも一切ありませんでした。
給料をいただきながら勉強させてもらえるので、プログラミングに抵抗ない人はとりあえずインターン応募すべきだと思いました。夜勤で命削っていたころよりも給料が高くて衝撃でした。
もっと早く知りたかったなぁという気持ちがあります。 東京の学生は機会に恵まれていて羨ましい。。

最後に

2ヶ月という限られた時間でしたが、得られるのもが大きく濃密なインターンとなりました。
メンターの小野さんが実践と理論をいい感じに組み合わせてわかりやすく教えてくださり、ディープラーニングを学ぶ最短ルートを歩めたように思います。 そのおかげで、ディープラーニング初心者は脱することができたように感じます。
社員の皆さん、メンターの小野さん、2ヶ月間ありがとうございました。

画像の内容をAIが文章で答えるデモ

f:id:kentaro-suto:20190124195850j:plain

こんにちは。エクサウィザーズAIエンジニアの須藤です。

エクサウィザーズ が提供しているAIプラットフォームexaBaseに、「画像の内容をAIが答える」という事例があります。 画像解析とテキスト生成という、ディープラーニングでも特に成功している分野の組み合わせであり、いかにも人工知能らしい応用例となっています。

今回、これをWebブラウザ環境に移植できたので報告します。 いつもよりモデルが大規模なため動作環境が限られるのですが、特別な設定などは必要ありませんので、気軽に試していただきたいと思います。

作り方

このアプリケーションは、画像解析を担当する学習済みInceptionモデル*1と、テキスト生成を担当するLSTMモデルの2つで構成されています。 処理の流れは以下の通りです。

  1. 必要なモデルを読み込む。
  2. 画像を取得する。
  3. 画像をデータに変換する。
  4. 画像データをInceptionモデルに与え、特徴量を得る。
  5. LSTMモデルに、特徴量と開始コードを与え、次の単語の確率を推論する。
  6. 最も確率の大きい単語を選び、画面に書き出す。
  7. LSTMモデルに、特徴量と選んだ単語の番号を与え、次の単語の確率を推論する。
  8. 終端コードが選ばれるまで4と5を繰り返す。

元のコードはPython + Kerasで書かれていました。 これをJavaScript + Tensorflow.jsに書き直します。 読み込みや推論など、元々フレームワークを使用していた部分は、JavaScriptでも同等の機能で置き換えることができます。 その他のPythonで直接記述されていた部分は、JavaScriptに翻訳する必要があります。

また、オリジナルのモデルでMergeレイヤーが使われていましたが、これはTensorflow.jsがまだ扱えないクラスです。 Concatenateレイヤーを使ってモデルを書き直す必要がありました。

動作環境

モデルの規模が大きくメモリを大量に消費するためか、動作できる環境が限られます。 参考までに私の環境での検証結果を示します。 ハード環境によっては異なる結果になるかもしれません。

プラットフォーム ブラウザ バージョン 対応状況
macOS Safari 12 × 実行途中で再読み込み
macOS Chrome 71
macOS Firefox 64
macOS Opera 57 × 読み込みでエラー
Windows IE 11 × JavaScriptが未対応
Windows Edge 42 x 読み込み中に再読み込み
Windows Chrome 71 × 読み込みでエラー
Windows Firefox 64
Windows Opera 58 × 読み込みでエラー

使い方

  1. このページにアクセスしてください。 https://base.exawizards.com/view/modelDetail?id=41

  2. ページの中ほどのリンクをクリックして、しばらくお待ちください。 f:id:kentaro-suto:20190124182906p:plain

  3. 2つのモデルを別々に読み込んでいます。このように表示されたら折り返し地点です。 f:id:kentaro-suto:20190124185412p:plain

  4. UIが表示されたら、サンプル画像を選択するか、ローカルファイルを読み込ませてください。 f:id:kentaro-suto:20190124185754p:plain

5.画像を説明するテキストが表示されます。 f:id:kentaro-suto:20190124185923p:plain

結果の例

手持ちの画像で検証しました。

画像 テキスト ひとこと
f:id:kentaro-suto:20190124190550j:plain two white and white cat standing on top on the roof 白茶でなくて白白なのが惜しいですが、ほぼ合っています。
f:id:kentaro-suto:20190125133238j:plain cows are standing on the grass near the grass たまに同じ言葉を繰り返します。
f:id:kentaro-suto:20190124191659j:plain the snow covered street is covered with snow 雪が積もりまくっていますね。
f:id:kentaro-suto:20190124192218j:plain the cake is on the plate with the other fruit ばななが入ったお菓子、正解です。
f:id:kentaro-suto:20190124190820j:plain an open box with some food on it 国籍も不明だし、なるほどなんらかの食べ物としか言えませんね。
f:id:kentaro-suto:20190124192613j:plain there is some food that is on the table とにかく食べ物なことはわかるようです。
f:id:kentaro-suto:20190124192917j:plain the yellow flower is growing on the side オレンジの花が嫌いなんでしょうか。
f:id:kentaro-suto:20190124193151j:plain cars parked on the side walk near trees うまくいっている例です。
f:id:kentaro-suto:20190124193727j:plain the seagull is standing on the boardwalk near the stairs 階段も遊歩道も実は近くにあります。「ありそうな雰囲気」で判断しているのかもしれません。
f:id:kentaro-suto:20190124193331j:plain an image shows an image on the page to describe 説明できていない感じが伝わります。

まとめ

ブラウザ上で動く、画像の内容をAIが答えるデモを作りました。

尚、エクサウィザーズは優秀なエンジニア、社会課題を一緒に解決してくれる魔法使い”ウィザーズ”を募集しています。ご興味を持たれた方はぜひご応募ください。 採用情報|株式会社エクサウィザーズ

ExaWizards Engineer Blogでは、定期的にAIなどの技術情報を発信していきます。Twitter (https://twitter.com/BlogExawizards) で更新情報を配信していきますので、ぜひフォローをよろしくお願いします!

*1:Inceptionモデルの重みは Apacheライセンスの下で公開されています